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NATIONAL ADYISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1311 . : :

CONTRIBUTIONS TO THE THEORY OF THE SPREADING
¥*
OF A FREE JET ISSUING FROM A NOZZLE

By W. Szablewskil
PART I.- THE FLOW FIELD IN THE CORE REGION

ABSTRACT:

For the flow field of a free jJjet leaving a nozzle of circular cross
section in a medium with straight uniform flow field, approximate formulas
are presented for the calculation of the velocity distribution and the
dimensions of the core region. The agreement with measured results is
satisfactory.

OUTLINE:
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I. INTRODUCTION AND SURVEY OF METHOD AND RESULTS

Knowledge of the flow field of a free Jet leaving a nozzle 1s of
basgsic importance for practical application.

Investigation of such a flow field is a problem of free turbulence.

In theoretical research the following specialized cases of our

" problem have already been treated:

(2) The mixing of two plane jets, the so-called plane jet boundary.
These conditions are encountered in the immediate proximity of the nozzle.

¥ngr Theorie der Ausbreitung eines aus einer DUise austretenden freien
Strahls." Untersuchungen und Mitteilungen Nr. 8003, September 19hk.
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(b) The spreading of a rotationally-symmetrical jet issuing from a
point-shaped slot in a wall, the so-called rotationally-symmetrical jet
spreading. This state defines the condltlons at very 1arge dlstance
from the nozzle.. :

In considering a free jet leaving a nozzle of circular cross sec-
tion, we may subdivide the spreading procedure, according to an essential
characteristic, into two different regions:

(1) Region where a zone of undiminished velocity is still present
(the so-called jet core). We shall call this range, which extends from
the nozzle to the core end, the core region. TFor the immediate proximity
of the nozzle the conditions of the plane Jet boundary exist.

(2) The region of transition adjoining the core region which is
characterized by a constant decrease of the central velocity. This
region opens into the region of the rotationally symmetrical jet
spreading mentioned above.

So far, there exists only an investigation concerning the core

region (reference 1); it is limited to the case where the surrounding
medium is in a state of rest.

Method and Results

In the present paper, the spreading of a Jet in the core region is
treated for the general case where the surrounding medium has a straight
uniform flow field (or, respectively, where the nozzle from which the
jet issues moves at a certain velocity through the surrounding medium at
rest).

The theoretical investigation is based (reference 2) on the more
recent Prandtl expression for the momentum transport

e(x) = 0(x) | Tgay = T

One then obtains in the rotationally symmetrical case the following
equations:

Continuity: .

d(ru) B(rv) -0
Bx Br
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Momentum transport:

where

" u; = velocity at the jet core

“Yo

velocity of the.surrounding medium

: (-‘11 > .-uo> - :

With reference to the present problem

Mixing regqion

o)

we introduce, instead of r,

_I’ - ro
N

X
as independent variable. We obtain:
Cdntinuity

du du

r

(n+?)<x&_w)+v+'(;+_;)a=o'
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Momentum transport

— — — 2—
E(x§_n%l)+—%%l=,e(x)/au+ 1

Velocity distribution in the Core Region

We limit our considerations at first to small disturbances of the
flow field; that is, to relatively small differences in velocity

(ul - up
hal
momentum transport may then be linearized

small quantity). The partial differential equation for the

where

r

Ve(x)

(It should be noted that by the transformation p = this equation

is transformed into the equation

IS
|

3w, JW1_ W _,
au2 O u _ ox
r - T
which represents a heat conduction equation.) With 7 = — instead

of r one obtains from the equation of momentum

o— - __ 2
du N du|l 1 . X _ou _xt o
an2 N To M%) ;X €(x)
N+ =
x

if
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This equation is a linear partial differential equation of second order
r

of parabolic type. For the plane case (_XO_ —y oo) this results 1in the

equation
___d25+d_—n_(_)_x =0
dT] m €lx x=0
To
with

ro_ uy
u -
therein c¢ = lim bgf) and is to be regarded as a function of _i_E_EQ.
x 1
T0
0

With the boundary conditions taken into consideration, the integration
yields

1 (E ) 1) fco'f\ e_(con)2 a(ogn) + %(1 + %)
0

with

1

o~ -
enc(u)

uip

We now obtain an approximate solution of our problem by generalizing
the plane velocity distribution and setting up the following formulation:

£=L(E-1)[

_ o
[Byn+os] - oyn +°£1 1 ug
™~ = Jo e d[éln + Ué] + 3 (1 + __)

ul.
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. With
(') i —_}'-7
gy1ix M;(ul ;luo)g:
X
u, - r
o = el ey [ o
To

we obtain a function which corrésponds to the exact solution for smasll

ﬁi as well as for large positive 1, thus in'boundary zones of the

0]
region of integration as well as in the interior of the region along the
jet n = 0.

If we now consider larger disturbances, the solutions obtained for
small disturbances are to be regarded as a first approximation.

u, - u
For the plane case the solution for arbitrary T already
. 1
exists, compare GOrtler (reference 3). It is found that, purely with
respect to shape, even the first approximation represents a very good
approximation. The velocity distribution calculated by GSrtler still
shows an uncertainty insofar as wu(n + a), with u(n), also represents
a solution. This uncertainty here may be eliminated, because for the
jet core vanishing of the transverse component v is required. There-
with the initial profile of the velocity distribution for arbitrary

u; - uy 1is then unequivocally fixgd.
u

If we limit ourselves, with respect to shape, to the first approxi-
mation, the initial profile is

where
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o 1
% =. Ty
QKC(_l__'___>
} } Uy

For the further development of the profiles starting from this initial
profile the regularity found for small disturbances is then taken as a

basisg _ _ _ _
z 1 (% o AL 1 Yo
— == |— -1 ;/h e an* + 5 1 +—
where
u, - u
1 0
n¥ = o’l‘q - 0.36 (—T—) + dp
1
Y1 - Yg
For ———EI——-——$(L this function is transformed into the approxi-

" mation function constructed for small disturbances. How far it may be

congidered an approximation in the region for arbitrary disturbance is
not investigated in more detail.

The functions appearing in the integral o7(x), opo(x) resu't from
the approximetion calculation for the dimensions of the core region,
carried out on the basis of the momentum theorem.

Calculation of the Transverse Component

The transverse component v of the flow is determined from the
continuity equation

v = - %J/T (r gg)qr (r #0)

L S - TQ du Bﬁ) , )
or .v = - (n N ro) J[n (ﬂ + < )(x 5 -1 EH dn respectively, with our
4 B x .

approximate function being substituted for U.
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The integration constant is determined from the requirement that
at the jet core the transverse flow component vanishes.

In order to avoid complication of the calculation, rectilinear
course of the mixing width b(x) is assumed. This assumption proves
approximately correct as results from the calculation of the dimensions
of the core region.

Dimensions of the Core Region

The dimensions of the core region (Jjet core and width of the
mixing zone) are calculated according to a formulation of the momentum

theorem
(G - uo)Vr - g;L/“w G(E-- uo)r ar (= rrxy)
r

= r(nb(x)(ul - uo)>§%

indicated by Tollmien (reference 4).

The occurring integrals as well as the %% defining the shearing

stress are determined approximately with the course of the velocity
distribution assumed rectilinear

E.;luo _ (ul ;1uo>(l )

Then there result for the limiting curve d(x) of the jet core and the
width b(x) of the mixing zone two ordinary differential equations of
the first order which can be reduced to cne eguation

- t(x) (y =ff(x) dx)

This integral can be represented with the aid of elementary functions;
however, for simplicity its calculation here is performed by graphical
method.

kK appears as the only empirical constant which results by compari-
gon with measurements given by Tollmien (reference 4) as k = 0.01576.
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Comparison with Measurements

In order to carry through a comparison between theory and experi-
B Sl
uip
test arrangement described in reference 5.

= 0.5 was performed with the

The comparison with the theory offers satisfactory results if one

- takes into consideration that the effective radius of the nozzle flow

referring to a rectangular velocity distribution is different from the
geometrical radius.
II. CALCULATION OF THE FLOW FIELD
(a) Velocity Distribution in the Core Region
We base the theoretical investigation on the more recent Prandtl
expression for the turbulent momentum transport
e(x) = kb(x) |Upgy = Ugip

where K = dimensionless proportionality factor, b = measure for width
of the mixing zone, and U = temporal mean value of the velocity.

We have at our disposal, for calculation of the flow field, the
continuity equation and the momentum equation for the main direction of
motion, which read in rotationally-symmetrical rotation

Continuity

=0

d(ru) N d(rv)
ox aor

Momentum transport

2_.
= G(X)(

or

o/l
mlg
R h—-
ozlox
R gl
e

o
|
+
<1

lel

vhere

€(x) = nb(x)(ul - uo)
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uy velbcity of the issuing Jjet

straight uniform velocity Qf the surrounding medium

&

ul >u0

We may integrate the continuity equation by introduction of a flow
potential

~ 3y -
m—&' I’V-—&

The momentum equation then is transformed into

u, - u
1
where e(x) = nb(x)(———ﬁi-) if we make the velocity dimensionless by
division by wuj. According to a method applied by Gortler (reference 3)

we set up for ¥ the expression
2
v ul“uow ¥ - Yo "
W=O+—_‘—_‘ul l+ ul 2+ . «

Y1 - Y
ul
the potential of an undisturbed flow (ul = uo); thus

developing V in powers of the parameter < >. Therein WO is
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If we enter with this formulation into the differential equation, we
obtain

‘ . o
BWO . <u1 - u uo) o) W .
or ug Bk Br ox 5r e
< 2
N | (ul - U O %%, ( 1 - uo) o |
“19x u ) ox ° d3r2 g d3r2 ©

SWb _(ul an ~] ul - Uo\ 5W1
+ e o s
ox uy uy / dor l

- 5 + 5 + . . . + — 3 +
or it or rer ul *

ul-

uy
of differential equations for Wl’ WE’ e o

If one arranges according to powers of ( ) one obtains a series

For Wi

¥y (azwo ) a%y ( awo) R (awo)

or \ox o 5"ar or are_ ox -
1 a“‘1 (5*0) 1 ¥ (Vg
>/)*rx \&)

= G(X)

'
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BWO )
& -m

into consideration

2

Is) Wl

Ssor T =€

etc.

r ——— - ——
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2, 3 au/l)
dr3 dre r

On the Theory of Small Disturbances

In the following, we shall limit ourselves at first to small

disturbances of the flow field;

<ul - Y
)

in velocity

that is, relatively small differences

small quantity).

The velocity field is then defined by the flow potential V.

Since %% = rﬁ, the above equation for Wl may be written as

follows:

du
T 3x

L}

e(x)

Therewith we have attained fbr
the equation of motion.

- 2
e(x)(au +r §—3>
dr arQ

Kb(x)(zl—:—39>

u1

smali disturbances a linearization of

(It should be noted at this point that by the transformetion

r R . .
go= our equation is transformed into

Ve(x)

o/
(%
=3

Q/
=
no
o
212
i

_&=O
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With reference to Reichardt's discussions (reference 6), it is of
interest to point out that this equation is of the type of a heat

conduction equatlon.)

In view of the conditions existing in our problem

*y

13

(ro = nozzle radius, x = distance from the nozzle in direction of the

jet axis), we introduce instead of r +the variable 17 =

coordinate transformation yields

<y

)r=const

thus the equation

(xn + ro)(%‘

or, respectively, for

ou

&

@

r - rg
x
du Bu l
N
' du _du _dunq
L:const R g% T3 T amox

_ | o
= G(X)Eﬁu%"L (xn + rg) —g—n—%lg-

This
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W, ;W _1,_ x Tl S
SRR ROl O R
X

e(x) = nb(x)(ul—;lup‘) |

This equation is a linear partial differential equation of the second
order of parabolic type. '

The solution of this differential equation is fixed unequivocally

by the initial condition that for % -—>» 0 +the velocity distribution
of the plane Jjet boundary appears.

We first derive (for small disturbances) the velocity distribution
of the plane jet rim.

For %(6 — >0 we obtain with the expression E(n) the equation
d% + d_TJ. n'l:x :l =0

To

with

.S e L

Gixi r u; -
__=O KC ———e——
To

u
u -
Therein c¢ = lim b(xx) and is to be regarded as a function of —l—u—uo-
1
.5.:0
Yo

With the boundary conditions

_ up for n—» -
u—y
uo for 'rl-——-) + oo
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taken into consideration, the integration yields

s E 1 ) PO e, 16+ 32)
o = Vi(ul - 1)/;) -e d(oon) + 5L + a1

 with

1

Enc(u)

uy

_Turning now to our problem, we can expect great difficulties in con-
structing the exact solution. We limit ourselves therefore to forming
an approximate solution. For this purpose we generalize the plane

velocity distribution (the initial profile) and set up the following
expression :

1 <uo -1) [E'ﬂx)ﬂ*“e(x'ﬂe-&(x)nwe(xﬂ

V)

d[él(x)n + Ue(xi] +

This formulation insures at the outset a reasonable ghape of the
approximation solution.

For o0q,0p,. there immedlately result, because of the initial
condition, the requirements

lim  oq(x) = og lim on(x) =0
X X
..___)0 _____>O
ry ry

Now the following equation is valid:

1 = lim 1

Uo_=
T i) 2 o
Y ro u; Jx
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Accordingly, we put

1

s uo)g
2k __—EI_— X

e(x) _ [~ Y\bp__1
x uy X 2012

Furthermore we take care that -our approximsation statement for small iL
0

o1(x) =

yields the exact solution; This will be the case when the (gﬁ)x

of the approximation statement agrees with the (%E) to be calculated
from the differential equation for ri‘a = 0.

According to the differential equation:

3 _ e(x) %, 3u|_1

N x
ro n e(x)

x = 2 2
x< {om N+ 2
x
Thus
_ 2
Bu) N e(x)joa , O 1 X
0 =30 N+
0 I'o X .
or, with
elx) _ _1
X 2012
3% ou 4 ou 712512
- R T Y 2 o
= = 11
dZ x o X " 0 2"121_1 + (F) ' (—x—)
ro o ro_> ro ro
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We now enter into this equation with our approximation expression; that
is, we put (except for = common factor)

%:—1-—1 =e Elﬂ;ogz oy |

%sg = e'-[:I2 [E 2(cln ; 02)015]
_ TP
:—il-}—{—_=e—[] (0’1'7\4'02')
o

We then consider the relations

14 _ _ 1
;m Ul - co B u - u.o

=0 ok 1 =0
rO [ C(—"—ul ) ro

furthermore, we assume

1im 01 =0

X 0
To

The last relation signifies that the width b of the mixing zone is,
in the proximity of the nozzle, of rectilinear character, an assumption
which seems Justified considering the fact that we approach, in the
proximity of the nozzle, the conditions of the plane Jet boundary.

We then obtain for the left side of the equation

_ N2
lim é%: = e'(Uoﬂ) 02'(0)
x X
r—o—)o o
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for the right side )
2-
9~

_ du _2 2' : . |
ou L 10 .
5 2 o 'l 2
lim L + o = g. - 20 20 '(0) e'(coﬂ)
_X____) 0 Gl 1+ ro N (I‘o GO
r £
0 .

Equating yields the equation

02'(0) = E EEO - 200202'(Oﬂ

200

or respectively,

0,'(0) = E%a

1
This results in 0 = - <;;) for small —-.
0

This guarantees first of all that our approximation expression

for X —> 0 represents the exact solution.
: T
0

If we enter with the approximation expression thus constructed into
the differential equation, we recognize immediately that the latter (due

-[oan+03]®
to the factor e is satisfied also for N —3 « <énd

arbitrary 3&).
To
Thus our approximate.expression with o7, o0p fixed in the above
manner yields a function which corresponds in boundary zones of the
.region to the exact solution.

As to the behavior of our function in the interior of the region,
it 1s Tound that the function in case of suitable "continuation” into
the interior of the region satisfies the differential equation along 1 = O.

For n = 0 the differential equation reads

5L E 6

To
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If one enters with the approximation expression and considers

€e(x) 1

2
201

‘ . 1 rO) 2 fx
on' = (—--200 + 0 0—)
2 = 20,2 \ X ‘ 201 1{rg

or

. 11
0'2 +O'2 x. ——201
%)
As solution one obtains
X
1 1 To /x 1 X
% =35 7%y o o1 Ura
SRR
To

For small ﬁ% one has agaln
w4 (2)
27 % oo \ g
We may also write
o oLl (U1~ Y0\ 1 fro.x_ b (X
2 T 2|k uy (3&) o \To/tx To
S

Therewlth we have obtained for small disturbances the following
approximation function

uy

i} - . | .
T =v%(au% ) 1)f()[:1 2] -[oan+og] Ao + o) +%(1 +b)
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where
o T
2&( o )x
X
) u, - u T
o - G
0

To sum up: This function satisfies the differential equation with
the initial conditions prescribed for small fi as well as for large

positive 7n3; 1in the interior of the region itosatisfies the differential
equation along the jet mn = 0. Therewith we have constructed an approxi-
mate function which in boundary zones of the region of integration and

in its interior along the jet n = 0 1is to be regarded as exact solution.

On the Theory of Larger Disturbances

u -
Let us now consider larger digturbances _l_G_EQ not a small
1

quantity .
First, we shall treat the problem of the initial profile.

Gdrtler's calculations (reference 3) showed that even the first
u -

approximation (for small —2;7;——— represents, purely with respect to
shape, & very good approximation. This applies, however, only to the
shape of the distribution curve - not to its position. The velocity
distribution calculated by Gortler is unequivocally fixed by the
ul-uo

2 ‘ .
points out that with T(n), ¥(n), the equations u* = u(n + a),
v¥ = ¥(n + a) - ati(n + a) also represents a system of solution. But
this remaining uncertainty is here eliminated by the fact that for the
jet core the transverse component v must vanish as follows from the
continuity.

arbitrary requirement that u(0) = However, Gortler

1f Tu(n), ¥(n) 4is the velocity distribution calculated by GSrtler
u, - . .
which is characterized by uT(0) = —l—§——9, the quantity a must there-

fore be determined in such a manner that vy - auy = 0 which
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v Y
ylelds a = —l. Taking Gortler's calculations as & hbasis, one obtains
u .

1 i/t - %
i EKT)M%

in first approximation

s -

.thus
o = - 0.36( 2
w

. u -
Therewith the initial profile for all ‘l‘E{EQ is unequivocally

determined. If we base the shape representation on the first approxi-
metion, the initial profile is

where

and

-~ UO: u -
V;nC<—£—GIEQ>

For the further development of the prafiles in the core region,
starting from this initial profile, we take as a basis the regularity
found for small disturbances.

— n* 2
I _1/% _ 1 JF e ¥ an* + 114 Eg)
ul Vri\ul 0 2 uy
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where

_ - _
1~ Yo
¥ = - i
) oym - 0.36 o + 0p
with the terms cl(x), UE(X) determined before.

This function therefore yields the initial profile in first approxi-
mation. How far it may be regarded as approximation in the region is
u -
not investigated in more detail here. For —l—EIEQ —>»0 it is trans-
formed into the approximate function found for small disturbances.

Our approximate function generalized to arbiltrary disturbances
therefore reads - :

where
U1 -~ %
n* = o3n - 0.36 o + 05
with
1
Ul(x) =
(ul - ‘.10>b
2K -
uy X
: x
u -1 Ir b
oo(x) = % 2n< L O) L J[\ ° (35)\/— d<31>
. ul <_£) 0 I'O X ro
To
The coordination to mn 1s obtained by
u -
n* + 0.36 _].'_.__u.g
n= A = Sg
51 %1
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where

| 1 _'6 ro>\/—d<ro
" (ro)\/'—

21
0'1—2

“Thus the curves result from one another by similarity transformations.

_ Calculation of the curves requires, furthermore, knowledge of the
functions o7(x), 02(x)' and, respectively, of the mixing width b(x)
and the constant k. These quantities result from the approximate

calculation (carried out with the aid of the momentum theorem) for the
dimensions of the core region.

Figure 1 contains for the parameter values

ul - uo .
———— = 1.0; 0.8; 0.6; 0.4; 0.2
u_l
the velocity distfibutions ii calculated for — = 0 and the core end.
1 0

In figure 2 the functions oy(x) and op(x) are plotted for the

parameter values named abové, ag functions of f? up to the core end.
o)

Calculation of the Transverse Component

The transverse component ¥ of the flow is determined from the
continuity equation

o(ru) . o(rv) _
ox Br

and, respectively

v = - %t/“(r g%)dr Ir £0
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r-r
Transformation of r into ¢ =-——3;—9 ‘results in
N r = - r
- 1 o\ /(. 3 3 0 )
v—-(—ro>f (ﬂ*?)("a;'"a;)dﬂ | (ﬂ*?f‘o
n+ =
X

The integration constant is determined from the requirement that in
the Jet core the transverse component ¥V must vanish.

As the Tower limit we choose accordingly the determined by the
bounding of the Jjet core (concerning the dimensions of the core region,
compare next paragraph).

In order to avoid complicating the calculation, a rectilinear course
of the mixing width b(x) was assumed. This assumption is approximately
correct. (Compare fig. 11.)

For the velocity distribution ﬁi we substitute our approximate
1

function. The performance of the calculation (appendix no. 1) yields
the following final formula.

(v i%)vl—&‘(u&i - 1)%;12(5;0){1} +%L{HI}]
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-Therein _ o
[]= (Ul'q - 0.36 o + 02')
. 1 - 4o
[]O = (0'1 '{]k -0 36 1 + 0'2)
[l 2
. 2 -]
Fi' = Vo arl

and Fl'E] and Fl'-[] , respectively, signify the values of the error
0
integral taken at the points [] and -[]o, respectively.

In figures 3 to 7 the distributions of the transverse component for

a section f? = 0.1 near the nozzle and a section of 2/4 of the core
0 1 -
length are plotted for the parameter values _l___EQ = 1.0, 0.8, 0.6, 0.k,
0.2. uy
o )
In the case 5 = 1.0 there are shown, moreover, the distri-~

1
butions for the sections 1/4 of the core length and the core end itself.

(Remark: The transverse components calculated for the core end seem
to yield too small values of the approach flow; the reason is that the
poor approximation of the velocity distribution, an essential charac-
teristic of the Prandtl expression, in the boundary zones takes the more
effect in the calculation of the V. component the more one approaches
the core end.) . - S

U - Yo

For small ST the transverse component becomes very-small

(note the different sceles in the various representations).
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(b) The Dimensions of the Core Region

Ar

Mixing region

Xy

The dimensions of- the core region are defined by the limiting curve
of the jet core d(x) and the width of the mixing zone ©b(x) or,
respectively, the outer limiting curve of the latter b(x) + d(x).

According to Kuethe's procedure (reference 1) we take as a basis
the theorem of momentum in Tollmien's formulation (reference 4).
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If one marks off a control area in the indicated manner, one
obtains in the -rotationally symmetricel case

(- o) = - R[5l ]

uy = velocity of the medium surrounding the Jet.

According to the more recent Prandtl expression

Txy = gb{x)(ul = uO) g%

Thus we obtain, if we, furthermore, take the limits of the mixing
zone into consideration

(ﬁ - vr - ?[fdﬂ) u - uo)r drjl = rnb(ul - uo) gg

According to the existing conditions we transform (according to Kuethe)
with

r - d(x)
"=

Then

r =>by +d

%ﬂ al b
=" T VY

If we make, in addition, the assumption that u depends only on n,
not on x, there follows

£ o v
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For v -we finally insert the continuity equation

N

or

] 1 - - by :
__m/; &TEqbb - n(ba +bd)-dd:]dn

For approximate calculation, we write for the velocity distribution the

sample expression
U - u up - u
u < uy )(l - ﬂ)

_r = d(x)
Y6

This expression, which may be regarded as a first rough approximation
for the velocity distribution, will probably lead to not too large errors

for the integral calculation. 'The value %% determining the shearing

stressg also will probably result in a usable approximation for the
central region of the mixing zone.

The result is
3
ul_
- =-
dTl(E"uO> -ul'uoe Ugfuy - Yo
) T *'2T>“‘“>'ﬁ(—q‘>

(1) We now put r = 0. The momentum theorem is then transformed by
integration into the form of the theorem of conservation of momentum

b+d
JF E(E - uo)r dr = const
0]
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- or

— P a+b | . 2
fo w (o - wo)r ar "fd 53 - uo)rar = w(uy - uo) -

[}

o _
ul(ul - uo) %? +L/;. ;(ﬁ - uq)(nb + d)b dn - ul(ql - uo) fg__

s - u _ u-u . 1 =% - u
-é—(—l——a—g)(d - o) 4B f ——( O n an + bdf i(—?—())dn =0
1 up AN

_ -
If one inserts T (_L__Jﬁz
; T

o )(l - 1) and carries out the integration,

one obtains

1/.2 2 2{/U1 ~Y%0\1 Y1 W -Y%1 Y1
§(d -I'O )+b K——Tl—)l—éﬁ-q-é +bd<-——-Tl'——§+E;-§)=o

2 ’ T l l - l
b /Y1 - Yo 1/ o) 2 2
_3_ 1 - _2..(_._l__> + bd 1 - .3.<___T_) + 4 = rO

(2) In order to obtain a second equation between b and d, we
put r = rg.

or

If one performs the somewhat lengthy elementary calculation, one
obtains finally (compare appendix no. .2)

Lo 3
oo jm -l 1frp - d 1], 1/To - 4 1
E ) Ez(b )*6]*3(——5—)-§+
. . _ . ) - d3 - d2
1o+ v (L0 302 0 L] ot
-ro -d ’, _ul -.;uo
dd[(‘_ﬁ'—) - :l = - roﬁ(“‘q—)

rof+
+
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The theorem of conservation of momentum reads in differentiated
form. (Compare (1).)

1 1(1"10) . ,l_lul'uo) ,{}g
be:3 AT +(bd+bd)2 i\ +dd'<1 0
By addition of the two equations one obtains

2

3 4
J1{To - d 1“1'“01‘0"1) . ,Il(rO"d
bb §(‘T‘)'g< = )( = +(bd+bd~)—2- o )_

N

(3) We now proceed to determine b and d from the two equations
obtained. We replace b in the second equation by the expression for
the function which we obtain by solving the first equation with respect
to Db.

where

- .3
%0772 1/u1 - Y
greas
2 ul
3
a8, =
DY)
2 uy
e
- 3 93\ ™
4
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Subsgtitution then ylelds

Y e ) b )
al! = El - (—ul——-) f2] = - K(——El——-)
with ' ' |

o ]
ol ) B
el T(;ﬂ L
LRI A

We obtain X as a function of 4
Ir r
0 ")
- .
a(x) =-%—L—-f -—1——u—of>d(d)
uy - p0>.1 uy 2
u
4 .
= .
RN g S A P f2>d(3_>
(ro K (ul - uo) 1 it o
uy

The evaluation of the integral could, in itself, be carried out

by analytiéal method since the integrand is built rationally in ri and
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a square root.. However, the breaking up into. partial fraction which
has to be done in this procedure is very troublesome. Hence it is
advisable to perform the evaluation graphically.

d Y3 - Yo
For — = 1 the integrand 7 -\———/)%H agsumes the indefi-
I'o ul :

nite expression The limiting value is

6-

(a0 + 2) (20+22)
Lim (f Y ) _119 & 1(“1 i ‘%) ° " =g 1
S R
o ay a. 80

If ﬁil was determined, analytically or graphically, as a function

0
of 2, b(x) results from
ro

EL = a0 Jl + .al - &2(9;52
To To ' To
The relation

PR W LR g

ro_

(which by comparison with measurements on the plane jet boundary may
gerve for the determination of K)_also is of interest.

The symbol Kk appears as the only empirical constant.

With the measured results on the plane jet boundary with zero outer
velocity (given by Tollmien (reference 4)) as a basis, there results

with
db>
db = 0.255
(dx %

T~
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| 0.255 = - K(=3) ——8—,;0_115

kK = 0.01576
Examples:

In figure 8 the dimensions of the corresponding core region are
represented for the parameter wvalues

ul - up

= 1.0, 0.8, 0.6, 0.4, 0.2
n

X
{ Fig%re 9 containsg the core lengths ?E, figure 10 the mixing
i O u - .
! widths ;E at the core end as functions of —1—3—39.
0 1

Figure 11 shows the mixing widths - for the various parameter

T
uy - 0
values of —}u 0 as functions of gi.

Figure 12 represents the angle of spread of the respective mixing

regi c = (B
glon ¢ = (=]
__:O.
To
i Figure 13 represents 0p = L as a function of
U - Yo
: 2 e ——
! uy
: Tup - uy -
: —l;——Eg, with Tollmien's value c¢ = 0.255 for —l_ﬁzgg = 1 being the

defining quantity.

Figure 14 shows for the medium at rest

) - U,
db o
as a function of ‘¢ = (—-) . Figure 15 shows 0o

\dx/x . Vﬁkc

ro
“function of ¢ = (—-) . _ T B

I)Ithe quantity &

as a
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Figure 16, finally, contains the limiting value

. u -~

Lim El _ (17“0) fE]
d 1
— -1
To

necegsary for calculation of the integrand in

a
To ujy -
1;___1_f p - (B 0\, d(d_)
ro K‘(“l - uo) 1 uy ro
i

III. COMPARISON WITH MEASUREMENTS

Measurements on a free Jet issulng from a nozzle and spreading in
moving air of the same temperature do not exist so far.

In order to test the theory by experiment, a measurement for the

u -
cage _l_E_EQ = 0.5 was performed at the Focke-Wulf plant.
1

The measurements were carried out with the test arrangement with
the 5 millimeter nozzle described in reference 5. A certain experi-
mental difficulty was experienced in producing temperature equality in
the two Jets; it was achieved by regulation of the combustion chamber
temperature with the test chamber pressure p, and the probe pres-
sure pg kept constant. However a perfect agreement of the jet tem-
peratures could not be accomplished inasmuch as the temperature measure- .
ment performed with a thermoelement is rather inaccurate in this low
region.

The test data were:

Outer Jet:
Static pressure pk = -100 mm Hg
(Measured relative to atmospheric pressure)
Room temperature to = 200
Barometer reading Py = 754.5 mm Hg
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Inner Jet:

Total pressure 5 Pg = 340 mm Hg
(Measured relative to atmospheric pressure

. Stagnation temperature ty = 59°

The evaluation of the measured values was made according to the
adiabatic

and the efflux equation

p,\£-1
2k 1
U.l = P— 1 gRT2 1 .- <F2-) K

with constant static pressure assured in the mixing region.

Due to the imperfect readabllity of the thermoelement which, as
mentioned before, 1s too rough for smaller temperature dlfferences, it
was impossible to measure the distribution of the stagnation tempera-
tures over the mixing region. For the evaluation a linear drop of the
stagnation temperatures along the mixing width was assumed.

For the outer jet there results
tA =9 GA = 151 meters per second

for the Jet issuing from the inner nozzle

ti = 130 Ei = 302 meters per second

The inner Jet therefore has, compared to the outer Jet, an excess

u -
temperature of 40.,'For the velocity ratio the result —l—GfEQ'= 0.5
' , 1
was obtained. p D
s,k
Pg P
Figure 17 shows the total pressure distribution P s
T o ' ) k

— 4+ — |
(_pB pB )cent:_ral
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made dimensionless with the central value, for the various test sec-
tions. The section near the nozzle which gtill shows the character of
a turbulent pipe flow is represented in figure 18. Figure 19 shows,
in addition, the variation of the total pressures along the Jjet axis.

Figures 20 to 22 contain the corresponding representations for the
velocities made dimensionless by the velocity wu; of the jet issuing
from the nozzle.

As to the comparison with the theory, it must be noted that the
velocity distribution at the exit from the nozzle is not rectangular,
as asgsumed in the theory, but that it represents the profile of a
turbulent pipe flow. (Compare fig. 21.) Hence it proves necessary to
introduce the conception of the "effective diameter" in contrast to the
geometric diameter.

We define the effective nozzle diameter as the width of the
rectangular velocity distribution of the amount w; which is equiva-
lent to the existing momentum distribution. That is, we calculate the
effective nozzle diameter from the equation

roefrect. -
ul(ul - uo) — =L/; ulu - uo)r dr

with the integral, which according to the theorem of conservation of
momentum represents a constant, to be extended over an arbitrary cross
gection.

In our case the integration over the cross section near the
nozzle ylelds '

Teffect., = o'9h5rgeom.
T = Tgeom.

Whereas the plotting over n = -

lets the test points appear
I - Teffect.

X

regults in a stagger of the velocity distributions with increasing ii
0

as still lying on one curve, the plotting over n =

toward negative 1. This stagger toward negative mn expresses the
immediately obvious fact that the isotacs of the flow field are curved
toward negative 1 (toward the Jet axis).

X

Figure 23 contains the theoretical curves for i?-: 0 and T

. 0
(the core end); in addition, the test points of the sections x = 90 mil-
limeters and x = 45 millimeters were plotted. The agreement appears
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to be good as far as the velocity gradient and the orientation in
gpace in the central mixing region are concerned; the agreement in the
transitions toward the jet core and the surrounding medium is less
satisfactory. Deviations in these trangitions .are essential charac-
teristics of the more recent Prandtl expression, but are caused here
probably mainly by the approximation character of our developments.

For the core length there results according to the theory a value

of Xy = 22.0rgppects Whereas the measurements along the jet axis
' - 19 _
(compare fig. 22) result in about x 3015 = 20. 1reffect.
It hag to be noted that the experiméntal determination of the core end
is affected by some uncertainty.

IV. SUMMARY

The spreading of a free rotationally symmetrical Jet issuing from
a nozzle represents a turbulent flow state.

The theoretical investigation is based on the more recent Prandtl
expression ¢ = ”blﬁﬁax - ﬁhin| for the momentum transport. The

continuity equation and the equation of momentum are at disposal for
calculation of the velocity distribution. In case of limitation to

u- -
smell disturbances <—l—ﬁ—39 small quantity, where wu; 1is jJet exit
1 .

velocity, wup velocity of the surrounding medium ) the equation of
momentum may be linearized

R (R, , 20
r&—e r 82

An approximate solution is constructed which is characterized by
the fact that in boundary zones of the reglon as well as along the Jet
n = 0 1in the interior of the region it has to be regarded as exact
gsolution.

u, - u "
For arbitrary disturbances ” 0 arbitrary > O) the initial
1

profile which corresponds to the velocity distributions of two mixing

. plane jets is determined by.the fact that the transverse component in

the jet core vanishes. The regularity found for small disturbances is
taken as a basis for the further development of the profile from this
initial profile.
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The transverse component of the flow is determlned from the con-
tinuity equation, with the use of the approximate function for the
velocity component in the main flow direction. For simplicity a linear
course of mixing width 1s assumed. :

The dimensions of the mixing region'(limiting curve of the Jet
core d(x) and mixing width b(x)) are approximately calculated from
the theorem of momentum

(ﬁ'- ub)vr —-éiL/;% ﬁ(ﬁ - uo)r ar | (= rTxy)

= er(x)(ul - uo) g%

under assumption of a rectilinear course of the velocity distribution

r - 4
over T, where 17 = T

In order to test the theory by experiment, a measurement was

. uy -

performed for -;LjI—EQ = 0.5 with a 5 millimeter nozzle. In order to
1

carry out the comparison with the theory, the conception of the effec-

tive nozzle diameter 1s introduced which complies with the deviation

of the effective velocity distribution for an issuing Jet from the

rectangular velocity distribution

2
_ul(ul - uo) E_EfggEE; =k/;oo ﬁ(ﬁ - uo)r dr

The agreement between theory and experiment is satisfactory.
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APPENDIX

NO. 1. CALCULATION OF THE TRANSVERSE COMPONENT

We substitute

Bﬁ/u]_ 1 'llo _[] , -
Brizﬁ<;l--l>e El(n+a)+02]
0




s e et e,

R

e T

PR

>

NACA TM 13

11

k1

If we assume & rectilinear course of the mixing width b(x)

have 01

= 0.

**"‘we then obta.in ‘

2 2
1 1 {9 ) " o7 2. ToM -[]
— == - 1} o] e n dn + — e

X

The evaluation of the integrals yields

(a)

thus

[0 nﬁ_f -F agom) = [ < ap

(1= (o0 - 036 22214 o)
f-n R El{f[] o ac1

i3 - T

. . ul - uo
e 7.‘[]0 = E‘Il(-ﬂk) - 0.36 _u_l__ + 02

2
et 4yl +

n dn
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1 ¢
fo - 2l

where
2
F,_eJ[U -]
1 == e d
g error integral
thus
2
L 1 V&
dn = — =[p_! 1
f.,, LA 2(1EJ 1-[30)
k
(b)
N
f.e-[] Tld'fl
—nk
[]1=o0qn - 0.36 ;iuo + 0y
ul-
[]+0.36 —g— - o

This results in

- v
-2E|+036 -
f - ndn--—f . o L2 a(eyn)

rJ <"2 S0 T > 02
=1 [ a0
0'12 ] E] dU 0'12 f ©




(c)
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3 PR I SUD DT SUY_ .0 SRR S,

L s e et A e e

h

2 2 2
Jetl a2 et o L [l an

thus '
e 2 2
f ol nedT]:__-L( - -[12>” _33__% -0 d[]-;%(ga-
Ny [l 1
2
- Yo |
O.3l6u1—uo)<..!'-[] e-[]e)[] +(02-0.36 1 ) EF 1 + T
wo )\ 2 [1o 03 2l 1‘“0) |
uy - U.O
2 2 2 gp - 0.36 2 2
f“ 1 nedn=%_;§<[]e[1 e -[]o)+(2 - )(e-[] e-[]o),,
-nk g1 Gl
Y (g F 1 ]2 (u o36u1-u°>2:|
R = 4 [0p -~ 0.
2(1[1 1-[10> 2 m
If one substitutes these expressions, one obtains f:or uil the formula given in. the text.

TIET WL VOVN
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APPENDIX
NO. 2. FOR CALCULATION OF.- THE DIMENSIONS OF THE CORE REGION

The theorem of momentum with r = ro -reads

T - w ka Y Ak A i) W I
r=rg r=rq Ta

_ .
bl T Yo\ ™
Tot Jor

u
1 r=rq
With the coordinate transformation n = — ; d e obtain
ro-d

. b 4 u/u

> = - Lf ——-lEbe' - n(pd" + b'd) - dd:'] dn

U Jper ro 0 dn

0]
d+b 1 /u -
) - d u uo -1%bb' - n(bd' + b'd) - da'|an
dx
ro ro-d
_ b

We substitute

ﬁ"uo=(?11'“o)(l_ﬂ)

uy

u 4 - U
dT] = -( ul

L5
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. o2 o
AREEY] - o0 B

This results in

u - u\ig Y " Y Ty = d\/u, - uy AL P
( ! ><€I>r=ro r0=-( uy .>(l- b X v >E fg o
n y
(bd' + b'd) dn + dd’ &
v [T [ ,]

To

S ] L e e
_ v

uO u]_ = uo)_JEng' + T’;(bd' + b'd) + 44’ dT]

ul ul
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. If one-evaluates the integrals, one obtains
o 3
-u0\<i). . 7=-111_'u0_ . __,ro' vb'fTo - @ .
uy 17 r_=r6 o~ "\ uy B b 3 )
2 - .
(bd' b'd)( 0~ d) . dd,(ro - d)
'\ ==
' 2
d+b — - e - 1
A R s IASES
X g
r : ro-d

b

1

39(111 - 9

ul 1

o/"1 ~ Yo
—< f n dn| + dd’ (L - n)dn +
l rO'd I‘O—d

Ny

1 ' PR~
T R Lo
-d ro-d
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If we insert these expressions into the equé.tion".of momentum - and
order, we obtain . :

— ., 2,0 43 2 N o
wb' | L{2L " o) (o - L L%~ Yo\ (o - Y e St o) O
3 U.l b 6 111 b 6 uy
2(uy - up\®(rg - 4\3 ;ul'uoer‘d 1 %% - ¥\

3 up b )-2 uy b -3ul uy

1uo-u1'uo\r0'd3 , , 1(u1 - ug\F(rg - @\?
FaY (s ﬂ< ”””EE( =) () -
- ,
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which finally leads to

u d) ]

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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Figure 23.- Comparison between theory and experiment.
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